Radioactive Waste


Radioactive wastes, must for the protection of mankind be
stored or disposed in such a manner that isolation from the
biosphere is assured until they have decayed to innocuous
levels. If this is not done, the world could face severe
physical problems to living species living on this planet. 

Some atoms can disintegrate spontaneously. As they do, they
emit ionizing radiation. Atoms having this property are
called radioactive. By far the greatest number of uses for
radioactivity in Canada relate not to the fission, but to
the decay of radioactive materials - radioisotopes. These
are unstable atoms that emit energy for a period of time
that varies with the isotope. During this active period,
while the atoms are 'decaying' to a stable state their
energies can be used according to the kind of energy they

Since the mid 1900's radioactive wastes have been stored in
different manners, but since several years new ways of
disposing and storing these wastes have been developed so
they may no longer be harmful. A very advantageous way of
storing radioactive wastes is by a process called
Vitrification is a semi-continuous process that enables the
following operations to be carried out with the same
equipment: evaporation of the waste solution mixed with the 
1) borosilicate: any of several salts derived from both
boric acid and silicic acid and found in certain minerals
such as tourmaline.
additives necesary for the production of borosilicate

calcination and elaboration of the glass. These operations
carried out in a metallic pot that is heated in an

furnace. The vitrification of one load of wastes comprises
of the following stages. The first step is 'Feeding'. In
this step the vitrification receives a constant flow of
mixture of wastes and of additives until it is 80% full of
calcine. The feeding rate and heating power are adjusted so
that an aqueous phase of several litres is permanently
maintained at the surface of the pot. The second step is
the 'Calcination and glass evaporation'. In this step when
the pot is practically full of calcine, the temperature is
progressively increased up to 1100 to 1500 C and then is
maintained for several hours so to allow the glass to
elaborate. The third step is 'Glass casting'. The glass is
cast in a special container. The heating of the output of
the vitrification pot causes the glass plug to melt, thus
allowing the glass to flow into containers which are then
transferred into the storage. Although part of the waste is
transformed into a solid product there is still treatment
of gaseous and liquid wastes. The gases that escape from
the pot during feeding and calcination are collected and
sent to ruthenium filters, condensers and scrubbing
columns. The ruthenium filters consist of a bed of 
2) condensacate: product of condensation. 

glass pellets coated with ferrous oxide and maintained at a 

temperature of 500 C. In the treatment of liquid wastes,

condensates collected contain about 15% ruthenium. This is 

then concentrated in an evaporator where nitric acid is
destroyed by formaldehyde so as to maintain low acidity.
The concentration is then neutralized and enters the
vitrification pot. 

Once the vitrification process is finished, the containers
are stored in a storage pit. This pit has been designed so
that the number of containers that may be stored is
equivalent to nine years of production. Powerful
ventilators provide air circulation to cool down glass. 

The glass produced has the advantage of being stored as
solid rather than liquid. The advantages of the solids are
that they have almost complete insolubility, chemical
inertias, absence of volatile products and good radiation
resistance. The ruthenium that escapes is absorbed by a
filter. The amount of ruthenium likely to be released into
the environment is minimal. 

Another method that is being used today to get rid of
radioactive waste is the 'placement and self processing
radioactive wastes in deep underground cavities'. This is
the disposing of toxic wastes by incorporating them into
molten silicate rock, with low permeability. By this
method, liquid 

wastes are injected into a deep underground cavity with
mineral treatment and allowed to self-boil. The resulting 
steam is processed at ground level and recycled in a closed
system. When waste addition is terminated, the chimney is
allowed to boil dry. The heat generated by the radioactive
wastes then melts the surrounding rock, thus dissolving the
wastes. When waste and water addition stop, the cavity
temperature would rise to the melting point of the rock. As
the molten rock mass increases in size, so does the surface
area. This results in a higher rate of conductive heat loss
to the surrounding rock. Concurrently the heat production
rate of radioactivity diminishes because of decay. When the
heat loss rate exceeds that of input, the molten rock will
begin to cool and solidify. Finally the rock refreezes,
trapping the radioactivity in an insoluble rock matrix deep
underground. The heat surrounding the radioactivity would
prevent the intrusion of ground water. After all, the steam
and vapour are no longer released. The outlet hole would be
sealed. To go a little deeper into this concept, the
treatment of the wastes before injection is very important.
To avoid breakdown of the rock that constitutes the
formation, the acidity of he wastes has to be reduced. It
has been established experimentally that pH values of 6.5
to 9.5 are the best for all receiving formations. With such
a pH range, breakdown of the formation 

rock and dissociation of the formation water are avoided.
The stability of waste containing metal cations which
become hydrolysed in acid can be guaranteed only by
complexing agents which form 'water-soluble complexes' with
cations in the 
relevant pH range. The importance of complexing in the
preparation of wastes increases because raising of the
waste solution pH to neutrality, or slight alkalinity
results in increased sorption by the formation rock of
radioisotopes present in the form of free cations. The
incorporation of such cations causes a pronounced change in
their distribution between the liquid and solid phases and
weakens the bonds between isotopes and formation rock. Now
preparation of the 

formation is as equally important. To reduce the
possibility of chemical interaction between the waste and
the formation, the waste is first flushed with acid
solutions. This operation removes the principal minerals
likely to become involved in exchange reactions and the
soluble rock particles, thereby creating a porous zone
capable of accommodating the waste. In this case the
required acidity of the flushing solution is established
experimentally, while the required amount of radial
dispersion is determined using the formula:
R = Qt
2 mn 

R is the waste dispersion radius (metres)
Q is the flow rate (m/day)
t is the solution pumping time (days)
m is the effective thickness of the formation (metres)
n is the effective porosity of the formation (%)
In this concept, the storage and processing are minimized.
There is no surface storage of wastes required. The
permanent binding of radioactive wastes in rock matrix
gives assurance of its permanent elimination in the
This is a method of disposal safe from the effects of
earthquakes, floods or sabotages. 

With the development of new ion exchangers and the advances
made in ion technology, the field of application of these
materials in waste treatment continues to grow.
Decontamination factors achieved in ion exchange treatment
of waste solutions vary with the type and composition of
the waste stream, the radionuclides in the solution and the
type of exchanger. 

Waste solution to be processed by ion exchange should have
a low suspended solids concentration, less than 4ppm, since
this material will interfere with the process by coating
the exchanger surface. Generally the waste solutions should
contain less than 2500mg/l total solids. Most of the
dissolved solids would be ionized and would compete with
the radionuclides for the exchange sites. In the event
where the waste can meet these specifications, two
principal techniques are used: batch operation and column
The batch operation consists of placing a given quantity 

of waste solution and a predetermined amount of exchanger
in a vessel, mixing them well and permitting them to stay
in contact until equilibrium is reached. The solution is
then filtered. The extent of the exchange is limited by the
selectivity of the resin. Therefore, unless the selectivity
for the radioactive ion is very favourable, the efficiency

removal will be low. 

Column application is essentially a large number of batch
operations in series. Column operations become more
practical. In many waste solutions, the radioactive ions
are cations and a single column or series of columns of
cation exchanger will provide decontamination. High
capacity organic resins are often used because of their
good flow rate and rapid rate of exchange.
Monobed or mixed bed columns contain cation and anion
exchangers in the same vessel. Synthetic organic resins, of
the strong acid and strong base type are usually used.
During operation of mixed bed columns, cation and anion
exchangers are mixed to ensure that the acis formed after
contact with the H-form cation resins immediately
neutralized by the OH-form anion resin. The monobed or
mixed bed systems are normally more economical to process
waste solutions. 

Against background of growing concern over the exposure of
the population or any portion of it to any level of 

radiation, however small, the methods which have been
successfully used in the past to dispose of radioactive
wastes must be reexamined. There are two commonly used
methods, the storage of highly active liquid wastes and the
disposal of low activity liquid wastes to a natural
environment: sea, river or ground. In the case of the
storage of highly active wastes, no absolute guarantee can
ever be given. This is because of a possible vessel
deterioration or catastrophe which would cause a release of
radioactivity. The only alternative to dilution 
and dispersion is that of concentration and storage. This
is implied for the low activity wastes disposed into the
environment. The alternative may be to evaporate off the
bulk of the waste to obtain a small concentrated volume.
The aim is to develop more efficient types of evaporators.
At the same time the decontamination factors obtained in
evaporation must be high to ensure that the activity of the
condensate is negligible, though there remains the problem
of accidental dispersion. Much effort is current in many
countries on the establishment of the ultimate disposal
methods. These are defined to those who fix the fission
product activity in a non-leakable solid state, so that the
general dispersion can never occur. The most promising
outlines in the near future are; 'the absorbtion of
montmorillonite clay' which is comprised of natural clays
that have a good capacity for chemical exchange of cations
and can store radioactive wastes, 'fused salt calcination'
which will neutralize the wastes and 'high temperature
processing'. Even though man has made many breakthroughs in
the processing, storage and disintegration of radioactive
wastes, there is still much work ahead to render the wastes
absolutely harmless. 


Quotes: Search by Author